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A three-dimensional bio-reactor model of exploitative competition of two predator
organisms with inhibition responses for the same renewable organism with reproductive
properties is considered. By constructing a modified Lyapunov function and using LaS-
alle’s invariant principle, it is shown that the lower “break-even” concentration predator
organism survives in the competition.
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1. Introduction

The asymptotically behavior is an important topic in modeling the bio-reac-
tor in which two populations of micro-organisms compete exploitatively for a
single substrate. In the case of a non-reproducing and growth-limiting substrate,
many results have been reported (see, for example, [1-3]). However, in addition
to a constant input of limiting nutrient, a renewable resource with reproductive
properties — a more classic prey, should also be considered in the system [4].
Examples of competing for a renewable resource with some numerical simula-
tions can be found in the literature (see McGehee and Armstrong [5], Koch [6],
and Hsu et al. [4]). Usually, in the study of competition for a renewable sub-
strate, organisms consume the nutrient and the consumed nutrient converted to
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growth is proportional to consumption. Nutrient uptake (consumption) is usu-
ally taken to be of the Monod (or Michaelis—Menten) form: mxS/(a+ S), where
m is called the maximal growth rate and a is the Michaelis—Menten constant [4].
But in reality, other prototypes of functional responses are also possible [2, 3, 7].
In this paper, we consider such a competition with inhibition responses and dif-
ferent death rates [7] in the following form:

§ — S — i) B m1d, S X mads S X2

a7 K~ @+8Bi+88 (a+S)br+8)s,

dx; m1dy S )

aa _ —dy) a1 1
dr ((m T OB +s) Y O
dx, ( mody S )

— = —ds ) x2,

dr (ap + S)(br + S)

S0) > 0, x1(0) > 0, x2(0) > 0.

This system can be considered as predator-prey system consisting two
predators x; and x», and a single prey species S, the renewable resource in the
reaction vessel at time 7. The parameters, y and K are the growth rate and car-
rying capacity of the renewable resource S; m;, a; and d;,i = 1, 2, are maximum
predation rates, half saturation constants, and death rate of predators. The pre-
dators: x; and x» consume the prey with functional response of inhibition type
@ f_sl)‘i})f +3y and @ f;;gf T3y- Tespectively. §; is the yield constant for the preda-
tor x;. For simplicity, we will assume §; = 1,i = 1, 2 in the following discussion
because if not the case, a variable transformation can always make the constant
yield as 1. It is easy to see that the Michaelis—Menten type of response is a
monotone function, but the inhibition type is non-monotone. Since not many
results have been reported for the models with inhibition responses, a further
mathematical analysis for system (1) is important.

We shall use a modified Lyapunov function and LaSalle’s invariant prin-
ciple to prove the global stability of the model. Our results show that in the
competition of two predator organisms for a single prey organism with inhibi-
tion responses and with different death rates of the predator species, the lower
“break-even” predator organism survives in the competition.

Constructing a Lyapunov function to establish the global stability of a equi-
librium is not easy. However, once the Lyapunov function is obtained, then
the global stability follows directly from the LaSalle’s invariant principle. This
method is suitable for a large number of population models. The model with
inhibition responses studied in this paper is another good example in the appli-
cation of the Lyapunov-LaSalle’s principle for the global stability. One thing
we would like to mention that in the proofs of Theorems 2 and 3, even if the
“break-even” concentrations are equal, the proofs may still go through. So it
is possible that both organisms survive in the competition. This phenomenon is
definitely worth a further investigation.
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Our main results are presented in the next section.

2.  Main theorems and proofs

Our discussion is on the set Ri = {(S,x1,x2)|S>0,x1 >0,x, >0} with
the following basic assumptions for the parameters: for each i =1, 2,

(Bl): m; > Ja; + /bi;
(B2): m; — a; — bi + v/ (m; — a; — b)> — 4a;b; > 2K;
(B3): K; > a; + b;;

It is easy to verify that the solutions of system (1) are bounded and positive
for all + > 0, and S(¢r) < K for ¢ sufficient large [1, 4, §].
For i = 1,2, define A; as the solution of the equation

m;d; S

—d; =0. 2
(a;i + $)(bi + S) @
Then
1
Ai = E(mi —a; — b —/(m; —a; —bi)2—4aibi),
o ; 3)
A= z(mi —a; — bi +/(m; — a; — by) _4aibi)-

By (B2), A} > K, so there are only three equilibrium points in Ri that we need
to considered: Ep : (K,0,0), E1 : (A1, h1(X1),0), and Ey : (A3, 0, hp(Xy)), where
for each i, h;(S) is defined as

hi(S):L(l—i) @+ S)bi+8), i=102. @)
m,-d,- K
It follows that A;, i = 1, 2, represent the “break-even” concentrations, the values
of the nutrient where the derivatives of x;,i = 1, 2 are zeros. And, x; = h;(S) is
the prey isocline when x» = 0, and so is x» = /&(S) when x; is absent.

Before we present our main theorem, we introduce the following definition
and some known results (see [2, 3, 9]).

Definition 1. Consider the system of differential equations

dx

— = f(X), 5

T F(X) (%)
where f : Q@ € R"™ — R" is continuous. V is called a Lyapunov function on
G C Q for system (2.1), if

(i) V is continuous on G;
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(i) if V is not continuous at a point X € G (the closure of G), then

lim V(X) = oo;
X—-> X
XeG

(ili) V' =gradV - f <0 on G.

Theorem 1. (LaSalle’s Invariance Principle) Assume that V is a Lyapunov func-
tion of (2.1) on G. Define A = {X € GNQ : V(X) = 0}. Suppose M is the
largest invariant set in A. Then every bounded trajectory of (5) that remains in
G approaches the set M as r — +o0.

Following the idea in constructing Lyapunov functions of population mod-
els [9], we first introduce an auxiliary function F;(S) : (0,1;,) U (A;, K) — Ri
as

hi(%i) — hi(S)
F’(S) = S (m.l_aAl_b.);’_-_;2_a.b, : (6)
f}\i i i ,7[115 i lds
It follows that
S (mi —ai —bi)§ —E* — aib; dé
Ai mi's;:
 —a; — by 1 i
— %(5 ) — 2—m(52 —ad) - a’;. (InS —Ink;)
l 1 l
m; —a; — b; S+ A a;b; 1
= (S —n - SAr ),
( l)( mi 2m; mi S'i)
where
1
InS—Inix; = —(S—4;), for some ¢; € (S,A,)U((;,S), i=1,2.
Si

It can be verified that

S (mi —a; — b)§ —€* —aib;

/ (m; —a m)i_ 57— dibi e . for S € (0,K), S#xr. (7)
Ai i

In fact, if § > A;, then ¢; > A,
S (mij —a; —b)E — &> — a;ib;

dg
Ai mii‘-
- (S — ) m; —a; — b; B A A B aibii
m; 2m; m; Aj
— (5 )Li)mi)\i — (a; +b)ri — A2 — ajb
miA;

= 0 (by the definition of A;,i =1, 2).
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Figure 1. The prey isocline x; = h(S) when x, = 0.

Similarly, (6) is also true for S < A;.

For simplicity, we are now presenting our results just for the case of i = 1
because the ones for i = 2 are exactly same. The following theorem is necessary
for the investigating of the stability of the equilibrium Ej.

As shown in figure 1, by the definition of 4(S), it is easy to see that there
exists an S1 € (0, K), such that A} (S;) = 0, where

= (kl —aj — by +\/k12+a§+bf—a1b1 + Ka +Kb1)/3. (8)

Moreover, there also exists S; € (S1, K) such that

hi(S1) = h1(0) = yayby/m1d;.

Theorem 2. If S; < A, then there exists a § > 0, such that

max Fi(S) <6 < mm Fi1(S). 9)
0<S<i; A <S<

Proof. We divide the proof into three different cases: (i) S; < A1 < Sy, (i) §; <
M, and (iii) A1 = S;. We shall find a 6 such that (9) holds in each case.
The proof of (i): S; < A1 < §i.

Consider the curve: x; = h1(S) in the S — x; plane, as it is shown in figure
1, it can be verified that there exists S; € [0, S1) such that hl(Sl) = h1(A1). By
the definition of F;(S), we have

lim F;(S) =0, F1($) =0, lim Fi(S) = —o0, lim Fi(S) =
S—0t S—>A1_ S—>)~

>0 for Se(0,8)UR, K],
Fi(S 2
1 ){<O for S € (Sy, A1).

Suppose

max FI(S)> mm F1(S).
0<S<)\1 <S<
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Then there exists ¥ > 0 such that the equation F|(S)—m = 0 has three dis-
tinct roots, of which two are in (0, §1) and one in (A1, K]. Let r, ry, r3 be the
three roots, then 0 <r; < < S < M <r3 <K.

Consider the equation

—d S2_)\{2 b S
HI(S)=h1()»1)—h1(S)—7-[(m1m1 1 1 apog n )

It has four roots: Ay, and ry, 5, r3 in [0, K]. By a simple calculation,
6y 2mwaibii
mid K myS3

From Rolle’s Theorem, there exists ¢ € (0, K) such that H{"(¢) = 0. This
contradiction implies the existence of 6 > 0 such that

H{'(S) = — <0.

max Fi(S) <6 < mln F1(S).
0<S<\; <S<

Since F|(S) < 0 for S € (8, 1)), n}gax F1(S) < max F((S). Obviously, this 0
0<S<§
satisfies the hypothesis (9).

The proof of (ii): S| < Ap.

In this case, we have, lim Fi(S) = 0, lim F;(S) = —o0, hm Fi(S) =
§—0+ S—)Al_ S—>A

400, and

<0 for §e(,r),
F1(5) { >0 for Se (Kl

It is easy to see that any 6 € (0, N mgnK F1(S)) will satisfy formula (9).
1<8<
The proof of (iii): A; = Sj.
. . . 2)/)»1(1( aj—b;—3x1)
It follows that slin3+ F1(85)=0, Slingl Fi(S)= & Kb
law), Fi1(S) > 0 for S € (0, K], and F((S) is continuous in (O, K].
Let S =nAy, ne€(0,K/A1), n # 1. Then

hi(niy) = -

(by L’Hospital

Y
K —nA A (b A
q K( nia)(ay + nip) (b +niy),

and
hi(A1) —h(niy)
(g = ) (Mmgsb - 2 ) athy gy

Fi(na) =

1 mi
2y — DX (1 +Dh +ay + by — K)
— diKQabi(n—1—Inn) — (n— D23

ne€ 0, K/, n#1
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Consider the function
f10) = (= D (0 +2)23 + a1 + b1 — K)
— 7 (2a1b1( = 1= In) — (0 — D), (1)

for n € (0, K/A1), and n # 1, where 7 is a positive constant which will be deter-
mined later. It is easy to see that

lim fi(n) = —oo, f1(1) =0, and
n—0t

n—1

f{) = 3r1(n* = 1) 4 27a1by +2(n = (a1 + by — K + A37).

Moreover,
f') = 6Mn = 2marby /n* + 2(a1 + by — K + Afm).

Let n = 1. We can choose

B M +ar+b—K
B albl—k%

T = 1

: (12)

Such that f{"(1) = 0. In other words, when 7 takes the value of mp, n =1 is an
inflection point of the curve y = f1(n).
Since A; = S1, 311 +a; + b1 — K > 0 and by the definition of Aj,

mip—a; — by =20 +\/(m1 —aj; — by)? —4a1b; > 21,
thus
ajhy — A3 = (my —aj — b))A; — 23 > 0,

and 7o > 0.
Now by

f" () = 61 +dmarbi/n® > 0, for n € (0,K/Ar1), or S € (0, K)
f{'(n) is increasing, and f{"(n) > f{'(1) =0, for n € (1, K/r1). This implies that
f{(n) is increasing for n € (1, K/A1), and f{(n) > f{(1) = 0. In other words,
f1(n) is increasing for n € (1, K/A1). Therefore, fi(n) > f1(1) =0, that is

=D +2r +a; + by — K)
2a1bi(n — 1 —1In n) — (n — D23

> 710 (13)
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Thus,

2723 — D2(( +2)M +ar + by — K)
K Qaibi(n — 1 —1nn) — (n — DA
2yAf_ 2yMGhi+ar+b —K)

> ——T7

diK 0 di K (a1b; —k%)

Fi(S) =

, VSe (@, K).

Moreover, if n € (0, 1), then S € (0, A1), and f(n) < f(1) = 0, which implies

(n— D> +2)r +a; + by — K)

<, VS e (,xr). 14
2arbi(p—1—Inn)—(n— D22 " ©-40 (19
Thus,
2y A2 2v220Bh +a; +b — K
FI(S)<L710: yAMGAM +a ; ), VS € (0, A).
diK diK(aiby — 1))

Therefore, we always can choose

o — 2)/)»%(3)»1 +a;+ by — K)
diK (a1b) — A9)

’

such that the hypothesis (9) is satisfied. We complete the proof of Theorem 2.
Now we are in a position to prove the stability theorem.

Theorem 3. If A; < Ay, and if S1 < Ay, then E; is globally asymptotically stable;
in other words, (S(¢), x1(2), x2(¢)) — (A1, h1(X1),0) as t — +o0.

Proof. Let
s e € b
V(S’xl,xz)=xf (my —ar —b1)§ —§” —a 1d§
Al mi§
X1
[ 6~ e + et s
hi(A)

0, c(= 0) will be determined later. It is easy to see that V (S, x1, x3) € CYR3,R),
R} ={(S.x1,x2) [S > 0,x1 > 0,x2 > 0}, and V (A1, h1(%1),0) =0, V(S,x1,x3) >
0 for (S, x,y) € RY/{E1}.
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The derivative of V along the trajectory of system (1) is

. (m; —a; —b))S — S? —ayb;
V(S,x1,x) = !

miS
o ()/S (1 _ E) _ m1dy S o mods S . )
K] @+ +9" @+Sbh+9 "

N _ _ _ &2
+(x?_hl()\l)xil+9xf] R “‘b‘ds)

Al mi§
* ((m +m;>i;f+ 5 dl) 1+ 0y (<a1 +msl>i;f+ 5 dl) .
myds S
texd ((az TS dz) =
Denote
V(S,x1,x2) = Vi + Vo + V3,
where

_ g(my—a;—b)S—S*—ayb (

Vi =it Y (K —$) (a1 + 8By + ) — hi(A1)

(a1 + S (b1 + 5) mid K
S (my —ay —b)S -S> —ayb
i (my —a 1) aj ld$ ’
M mls
drA
Vo = cxfxz( Moo - dz), and
(az + A1) (b2 + Ay)

Vs = s (my —a —b)S — 8% —abh myds S
m;S (a2 + S)(b2 + S)

midiAg mads S madadq
+ 6 —dp ) +c — )
(a1 + A1) (b1+A1) (a2+8)(b2 +8) (a2 + A1) (b2 + A1)
By Theorem 2, there exists 6 > 0 such that (9) holds.
Notice that, A} is as defined in (3),
(my —aj —b1)S — §* —a1by = (S — 11)(S — A)). (16)
If S < Aq,

(my —ay —b))S — S? —arb
(a1 +8)(b1 +9)

< 0,
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and
hi(A1) — h1(S)
N (ml—al—bl)f—éz—albld <90
A mi§ §
Therefore,
S (my —a; —b)E — &2 — a1y
hi(S) —hi(x1) >0 dé,
Al mlé

and thus V| < 0. Similarly, if S > A, we also have V| < 0.

Also, since A1 < Ay, Vo < 0. We now just need to show that there exists a
¢ such that V3 < 0. We shall find the ¢ in two cases: (1) a; = ap, or by > by (ii)
a; < ap and by < by.

In the first case of a; > a», or by > by, since A < Ay, by Markus theo-
rem ([10, 11]), we can follow the same argument of Theorem 3.4 in [11], for any
number ¢, the solution of system (1) satisfies that

S@),x(), y()) = (A1, h1(X1),0) ast — oo.

This means that E;(A1, h1(X1), 0) is globally asymptotically stable. We just
need to find a ¢ for the second case of a; < ap and b < bs.

Let
AGS) = —mpdy (my —ay; —b1)S — S? — ayby
(ar 4+ S)(br+ S) mi
_ _ _ Q2 _
+cod, (my—ay —b))S — S —aib;
mi
myds S madaiq
p _ . 17)
(ay+ S)(by +S) (a2 + A1) (b2 + A1)
It follows that
—mady ) (S —=r)R] = 9)
A(S) = S—A)DA] —8) +co
P Y L N B ey vy o
Lo madi (S — A (azby — Sh)
(a2 + S)(ba + S)(az + A1) (b2 + A1)’
or,
N S — (—Mzdz(?x/l —8)(a1 + S)(b1 +5)
(a2 + S)a + S) by + S (b1 + ) mi

+ O — S)(az + S)(ba + S) +

cm1d(axby — Sk (a; + S)(b; + S))
(a2 + 1) (b + A1) '
(18)
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Define
wes) % )+ $)(b1 + 5) 1w
(5= r_ md; @by —Sr1) (@ +8)(b1+S)
9()\.1 S)(az + S)(b2 + S) + (ar+21)(br+21)
That is
w(s) = mads/m
o - by—b di(@br—Srp)
02 —$) (1 + ilzzlfsl) (1 + b21+sl) + Tt bt
Since
QIR
W(S) = mady/m1©(S) . (20)
_ by—b dj (arbr—Sny)
— (005 =9 (1+ 535 (1+ B + EseTs)
where
ar — aj by — by , ( az—al)( bz—bl)
OWS)=-0{1+ 1+ +O0A =S| —— 1+
) ( al+5)( b1+5) h1=9) (a1 + S)? b1+ S
a) — aj by — by midirg
+9x’—s(1+ )(— )—
=9 ar+ S (b + S)2 (a2 4+ A1) (b2 + A1)
<0. (21)

It follows that W/(S) > 0, since a, —a; > 0 and b, — b; > 0.
By (B2), }‘/2 > K, then ayb, = )»2)»/2 > MK, or apby — MK > 0, which
implies
arby — SA1 = arby — KA1 > arby — KAy > 0.

Since ayby — A% > 0, we can choose ¢ = W(A;) > 0. It follows that

midi(azxby — Siy) (a1 + S)(b1 + S))
(az + A1) (by + A1)

(W(r1) — V()

A(S) = (9()/1 —S)(ax+ S (b + S) +

S—XA

(az+ S)(a1 + )(ba+ (b1 + 5)
< 0 (since W(S) increases). (22)

Note that A(S) is always negative if S # Aj.

Therefore, V (S, x, V=Vi+VWVh+ V<0

By the LaSalle’s invariant principle, all trajectories tend to the largest
invariant set in A = {(S, x, y)|V/ = 0}. This requires S = A and y = 0.

To make {S|S = A1} invariant under the condition y = 0, it follows

MM midiq
S=ynmll—=) - =0. 23
’ 1( K) (@ + )b+ A (23)
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In other words, x| = —%— (1 — %‘) (a1 + A1) (b1 + A1) = hi(Ay). Therefore

mid,
{E1} is the only invariant set in A. We thus complete the proof of Theorem 1.

3. Discussion

Competition between species exploiting a common prey species is proba-
bly frequent occurrence in both nature and laboratory. However, not many the-
oretical work has been done on such systems [4, 8, 11]. Moreover, in most of the
population models, the functional responses are chosen to be some monotone
functions such as Monod (or Michaelis—Menten) function. But in real world
applications, it is not always the case. The one with non-monotone inhibition
response is, of course, worth a further study.

It looks to me the methods used in section 2 for the equilibrium E;(Ap,
hi1(x1), 0) is also working for the equilibrium E;(A>, h2(A32), 0). For example, if
we define

Sy = (k2 —ay—by+ \/k§ +a? + b} — arby + Kay + sz) /3, (24)

Theorem 2 is also valid for S» < X,. Moreover, in the proof of Theorem 3, if
we use A1 < Ay instead of Ay < A, then step by step the proof is still work-
ing. Therefore, I would like to make a guess that if A; = X\,, the two predator
organisms having same “break-even” concentration, both organisms will survive.
Therefore, to study the nonlinear oscillation between the two predator organisms
and the prey organism must be very interesting.
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